Author's Solution

Before going to the solution, let us see an important Geometric result.
Geometric result 1: (45° Theorem):
In $\triangle A B C$, if $\angle A=45^{\circ}$, and if ' O^{\prime} ' is its orthocentre, then $A O=B C$.

Proof :
Construction :
Draw the altitudes AD \& BE.
Now, $\angle A B E=\angle B A E=45^{\circ} \Rightarrow A E=B E$
In $\triangle A O E \& \triangle B C E$
(1) $\rightarrow A E=B E$
$\angle A E O=\angle B E C=90^{\circ}$
And $\angle E B C=\angle E A O \quad(\because A E D B$ is concyclic $)$
$\therefore \triangle A O E \cong \triangle B C E \quad$ (AAS Principle)
$\therefore A O=B C$
Proved.

Now, let us go to the solution of this month's (NOV-23) question.
Given :
$A C B$ is a semicircle with ' C ' as its midpoint. D is a point on $\operatorname{arc} B C$. $C E \perp B D$ produced. $E C$ produced meets the semi circle at F . EG $\perp A B$. EG \& FB meet at 0.
To prove:
$\mathrm{EO}=\frac{1}{2} A B$

Construction:

Mark the centre of AB at M. Join CM, AD, EM \& CD. Let AD \& EM meet at H. Join CH.

Solution :

C is the midpoint of semicircle $\mathrm{AB} \& \mathrm{M}$ is the midpoint of the diameter $\mathrm{AB} . \therefore C M \perp A B$.
' C ' is a point on the circumcircle of $\triangle A D B$ and CE \& CM are perpendicular lines drawn from
' C ' to its sides BD \& AB.
$\therefore E M$ is the Simson's line of $\triangle A B D$
\therefore CH \perp AD. (Third side)
Now, In Quadrilateral CEDH,
$\angle C H D=90^{\circ}$
$\angle H D E=90^{\circ} \quad$ (Angle in the semicircle)
$\angle C E D=90^{\circ}$ (Given)
$\therefore \angle E C H=90^{\circ}$
\Rightarrow CEDH is concyclic.
$\angle B F C=45^{\circ} \quad$ (Angle borne by an arc BC which is $\frac{1}{4}$ of the circle)
$\Rightarrow \angle E C D=45^{\circ} \quad(\because$ CFBD is concyclic)
$\Rightarrow \angle D C H=45^{\circ}=\angle H E D$ (Note that here CHDE is a square).
$\Rightarrow \angle M E B=45^{\circ}$
$\therefore \angle E B F=90^{\circ}-\angle E F B=90^{\circ}-45^{\circ}=45^{\circ}$
$(1) \rightarrow \angle H E D=\angle C E H=45^{\circ}$
$\Rightarrow F B \perp E M$
$\Rightarrow O$ is the orthocentre of $\triangle M B E$
(2) $\rightarrow \angle M E B=45^{\circ}$
\therefore As per 45° Theorem given above
$\mathrm{EO}=\mathrm{MB}=\frac{1}{2} A B$ \qquad

