Author's Solution

Before going to the solution, let us see an important Geometric result. Geometric result 1: (45°Theorem):

In $\triangle ABC$, if $\angle A = 45^{\circ}$, and if 'O' is its orthocentre, then AO= BC.

Now, let us go to the solution of this month's (NOV-23) question. Given :

ACB is a semicircle with 'C' as its midpoint. D is a point on arc BC. $CE \perp BD$ produced. EC produced meets the semi circle at F. EG $\perp AB$. EG & FB meet at O.

To prove:

 $\mathbf{EO} = \frac{1}{2}AB$

Construction :

Mark the centre of AB at M. Join CM, AD, EM & CD. Let AD & EM meet at H. Join CH.

Solution :

C is the midpoint of semicircle AB & M is the midpoint of the diameter AB. $\therefore CM \perp AB$. 'C' is a point on the circumcircle of $\triangle ADB$ and CE & CM are perpendicular lines drawn from 'C' to its sides BD & AB. \therefore *EM* is the Simson's line of $\triangle ABD$ \therefore CH \perp AD. (Third side) Now, In Quadrilateral CEDH, $\angle CHD = 90^{\circ}$ $\angle HDE = 90^{\circ}$ (Angle in the semicircle) $\angle CED = 90^{\circ}$ (Given) $\therefore \angle ECH = 90^{\circ}$ \Rightarrow CEDH is concyclic. (Angle borne by an arc BC which is $\frac{1}{4}$ of the circle) $\angle BFC = 45^{\circ}$ $\Rightarrow \angle ECD = 45^{\circ}$ (:: *CFBD is concyclic*) -----(1) $\Rightarrow \angle DCH = 45^{\circ} = \angle HED$ (Note that here CHDE is a square). $\Rightarrow \angle MEB = 45^{\circ}$ $\therefore \angle EBF = 90^{\circ} - \angle EFB = 90^{\circ} - 45^{\circ} = 45^{\circ}$ ------(2) (1) $\rightarrow \angle HED = \angle CEH = 45^{\circ}$ \Rightarrow **FB** \perp **EM** \Rightarrow O is the orthocentre of $\triangle MBE$ (2) $\rightarrow \angle MEB = 45^{\circ}$ \therefore As per 45° Theorem given above $EO=MB=\frac{1}{2}AB$ -----Proved *****